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Abstract—Background: Conditional compilation is often used
to implement variability in configurable systems. This technique
relies on #ifdefs to delimit feature code. Previous studies have
shown that #ifdefs may hinder code comprehensibility. However,
they did not explicitly took feature dependencies into account.
Feature dependency occurs when different features refer to the
same program element, such as a variable. Comprehensibility
may be even more affected in the presence of feature dependency,
as the developer must reason about different scenarios affecting
the same variable. Aim: Our goal is to understand how feature
dependency affects the comprehensibility of configurable system
source code. Method: We carried out an experiment in which
30 developers debugged programs with different types of feature
dependency. We recorded the time each of them had spent to find
a bug. Also, we used an eye-tracking device to record developers’
gaze movements while they debugged programs. Results: De-
bugging programs with global and interprocedural dependency
required more time and higher visual effort. Conclusion: Our
study showed that #ifdefs affect comprehensibility in different
degrees depending on the type of feature dependency. Therefore,
when possible, developers should take more care when dealing
with code with global and interprocedural dependencies.

Index Terms—Feature dependency, Program comprehension,
Configurable Systems, Variability bugs, Eye tracking

I. INTRODUCTION

Configurable systems address variability by means of fea-
tures that can be enabled or disabled [1], [2]. There are large
industrial product lines [1], [3] and open-source systems, like
the Linux kernel, that are examples of configurable systems
[4], [5]. One of the techniques most used to allow variability is
conditional compilation. By means of preprocessor directives,
like #ifdef, this technique allows developers to include or
exclude code fragments that will or will not be compiled [6],
[7], [2]. While programming, developers use #ifdefs to delimit
code fragments related to optional or alternative features.
Then, only features explicitly enabled are compiled.

Previous studies have shown that the presence of #ifdefs
might hinder code comprehensibility [8], [9], [10]. For in-
stance, Schulze et al. [9] showed that #ifdefs make debugging
more difficult and time-consuming. Melo et al. [8] compared
pieces of source code with and without #ifdefs and confirmed
that #ifdefs increased debugging time and visual effort. In
addition, many studies have found bugs that occur due to the

use of preprocessor directives [2], [11], [12], [13], [4], [5].
These bugs are called as variability bugs [4], [5].

Configurable systems usually include a high number of
features. Thus, two or more features are likely to share
code fragments. When different features refer to the same
program element, such as a variable, we have an occurrence
of feature dependency [14]. Depending on the scope of the
variable shared between features, Rodrigues et al. [14] defined
three types of feature dependency: global, intraprocedural
and interprocedural. Feature dependencies are common in
practice [15]. However, little is known about how #ifdefs affect
comprehensibility when their use causes different types of
feature dependency. In fact, previous studies do not explicitly
take feature dependencies into account when investigating the
impact of #ifdefs on comprehensibility.

Conditional compilation forces developers to consider mul-
tiple scenarios while trying to comprehend source code. The
effort for understanding source code that contains feature
dependencies may be even higher, as developers must reason
about different scenarios affecting the same variable. To inves-
tigate this hypothesis, we carried out a controlled experiment
to study how feature dependency affects comprehensibility of
configurable systems implemented with #ifdefs.

In our experiment, thirty developers performed tasks on
which they tried to find different variability bugs in programs
with feature dependency. Each developer analyzed programs
with different types of feature dependency. They also analyzed
programs with and without #ifdefs. We recorded the time each
developer spent to debug each program. Also we counted the
number of bugs each developer succeeded to find. Evaluating
software comprehensibility is a challenge because we need
to consider developer’s human factors, such as visual effort
[16], [17]. Considering this, we also recorded developers’ eye
movements using an eye-tracking device.

Our findings show that feature dependencies affected pro-
gram comprehensibility in different ways: (i) global and inter-
procedural dependencies required more debugging time than
intraprocedural dependencies, (ii) interprocedural dependen-
cies required higher visual effort than the other two types of
dependency, (iii) #ifdefs did not affect comprehensibility in
programs with intraprocedural dependencies, and (iv) feature



dependency did not affect the number of bugs correctly found.
In a nutshell, our results show that #ifdefs may hinder code
comprehensibility mainly when they cause global an interpro-
cedural dependencies.

The rest of the paper is organized as follow. Section II
explains conditional compilation and feature dependency. Sec-
tion III describes our experiment settings. Section IV discusses
the experiment results. Section V discusses threats to validity.
Section VI discusses related work. Section VII presents our
conclusions and future work.

II. CONDITIONAL COMPILATION AND FEATURE
DEPENDENCY

Conditional compilation allows variability. In this case,
variability means that specific features can be compiled or not.
For this, programmers often use C preprocessor (Cpp), which
allows the use of annotation directives (#ifdef) to indicate
the program elements, such as variables and functions, that
implement specific features [6], [7]. Listing 1 illustrates how
developers use Cpp to implement features by adding #ifdefs to
source code. Between lines 2 and 5 and lines 8 and 10, we have
a source code that implements the APPLY_PENALTY feature.
It will be compiled only if, before compiling the program, the
developer sets APPLY_PENALTY as enabled.

Listing 1. Example of Conditional Compilation and Global Dependency
1 float final_grade=0;
2 #ifdef APPLY_PENALTY
3 const float penalty = 1.5;
4 int exceeded_time = 4;
5 #endif
6 int main() {
7 ...
8 #ifdef APPLY_PENALTY
9 final_grade = final_grade - (exceeded_time *

penalty);
10 #endif
11 #ifdef RESULT
12 if (final_grade >= 0 && final_grade < 5)
13 printf ("disapproved");
14 else if(final_grade >=5 && final_grade <7)
15 printf ("approved to MS.C.");
16 else
17 printf ("approved to Ph.D.");
18 #else
19 printf ("Final Grade = %f", final_grade);
20 #endif
21 ...

Conditional compilation implies in feature dependency
whenever a developer defines a variable in a feature and uses it
in another feature or when two or more features use the same
variable [14]. For instance, in Listing 1, the final_grade
variable is defined outside any #ifdef, that is, it is defined in a
mandatory feature, which, in this example, we can call as final
grade calculation. Also, final_grade is used in features
APPLY_PENALTY (line 9) and RESULT (lines 12, 14 and
19). Therefore, there is feature dependency between: (i) the
mandatory feature and APPLY_PENALTY, (ii) the mandatory
feature and RESULT and (iii) features APPLY_PENALTY and
RESULT. In this example, the final_grade variable is
called as dependent variable as it is the element that causes
the dependency.

Taking Listing 1 as a motivating example, we can see that,
to understand the behavior of final_grade, the developer
should at least consider: both APPLY_PENALTY and RESULT
features enabled, both APPLY_PENALTY and RESULT dis-
abled, APPLY_PENALTY enabled and RESULT disabled, and
vice-versa. Mentally simulating all these scenarios may in-
crease the program comprehension effort.

Based on the definition and use scope of the dependent
variable, Rodrigues et al. [14] define three types of feature
dependency: global, intraprocedural and interprocedural.

Global dependency occurs when different features refer to
the same global variable. Listing 1 presents an example of
global dependency, as final_grade (line 1) is a global vari-
able. As explained before, final_grade is the dependent
variable, in this example.

Listing 2. Example of Intraprocedural Dependency
1 void return_book( ) {
2 #ifdef FINE_IN_CASH
3 float fine_rate_day = 1.5, fine_amount = 0;
4 #endif
5 #ifdef PUNISHMENT_IN_DAYS
6 int days_of_punishment=1, days_punished = 0;
7 #endif
8 int days_delay = 2;
9 if(days_delay>0){

10 #ifdef FINE_IN_CASH
11 fine_amount= days_delay * fine_rate_day;
12 #ifdef PUNISHMENT_IN_DAYS
13 days_punished= days_delay *

days_of_punishment;
14 #endif
15 #endif
16 }
17 ....
18 int main() {
19 return_book( );
20 ...

Listing 3. Example of Interprocedural Dependency
1 float calc_points(float total_points){
2 ...
3 #ifdef CONSIDER_SPECIALIZATION
4 bool isSpecialist = true;
5 #endif
6 #ifdef CONSIDER_SPECIALIZATION
7 if(isSpecialist)
8 total_points += 1;
9 #endif

10 ...
11 return total_points;
12 }
13 int main() {
14 float total_points;
15 total_points = calc_points(total_points);
16 printf("Total Points = %.2f", total_points

);
17 ...

Intraprocedural dependency occurs when different features
inside a function refer to the same variable, which is local to
that function. Listing 2 illustrates an intraprocedural depen-
dency. In this case, the dependent variable is days_delay,
which is defined within return_book() function. Still
within return_book(), days_delay is used by features
FINE_IN_CASH (line 11) and PUNISHMENT_IN_DAYS
(line 13).



Interprocedural dependency occurs when a function defines
or uses a variable and passes the content of the variable as
argument to another function. In the first function, the variable
is manipulated by one feature, and, in the second feature,
the argument is used by another feature. Listing 3 illustrates
an interprocedural dependency. The total_points vari-
able is defined in the function main() (line 14), which
implements a mandatory feature. Its content is passed to
calc_points(), where the corresponding parameter is
used by the CONSIDER_SPECIALIZATION feature (line 8).

III. EXPERIMENT SETTINGS

The main goal of our experiment is to evaluate the impact of
different types of feature dependency on the comprehensibility
of configurable systems. If a specific type of dependency
makes it more difficult to understand the source code, con-
figurable system developers should take care when either
maintaining or testing code fragments with such type of
dependency. In this context, the following research question
guides our study:
RQ – How do different types of feature dependency affect the
comprehensibility of configurable system source code?

A. Design

To answer our research question, we carried out a controlled
experiment with 30 developers, who analyzed programs trying
to find bugs. They analyzed different programs each with a
different type of feature dependency (global, intraprocedural
and interprocedural). We compared the comprehension effort
they spent to analyze each program. We quantified compre-
hension effort from different perspectives: (i) time to analyze
each program, (ii) number of correctly found bugs, and (iii)
visual effort. We quantified visual effort by means of different
metrics collected by the use of an eye-tracking device. We
give more details about these metrics in Section IV.

We also aimed to confirm whether the differences on
comprehension effort were due to the different feature de-
pendency types (implemented with #ifdefs) or were only due
to differences related to variable scope, such as the use of
global variables or local variables, regardless of the use of
#ifdefs. To achieve this, we also asked the developers to
analyze programs without #ifdefs, but equivalent to the ones
with #ifdefs. For each program with #ifdef, we have an
equivalent one without #ifdef. They are equivalent mainly in
two aspects. First, in the programs without #ifdef, we replaced
the #ifdefs with regular if statements. Second, the program
without #ifdef follow the same structure in terms of variable
use of its equivalent with #ifdef. For instance, a program with
intraprocedural dependency has an equivalent with the same
function and local variable, but with ifs as replacements of
#ifdefs. In Section III-C, when describing the bugs we used
in our experiment, we give an example of two equivalent
programs with and without #ifdefs.

In order to avoid learning effect, we selected six different
variability bugs to compose each program: (i) null pointer
dereference, (ii) assertion error, (iii) variable overlap, (iv)

nested feature, (v) undefined variable, and (vi) uninitialized
variable. Related literature has reported these bugs as recurring
in configurable systems [4]. Section III-C describes each of
them. Also to avoid learning effect, we had programs on six
different domains, each domain for a variability bug. For ex-
ample, we implemented the null pointer dereference variability
bug in a program on the “sales authorization message” domain.

In summary, for each variability bug, we implemented six
similar programs on the same domain, each one with the
following characteristics: (i) global dependency with #ifdef
(GI), (ii) equivalent to global dependency without #ifdef
(GW), (iii) intraprocedural dependency with #ifdef (IAI),
(iv) equivalent to intraprocedural dependency without #ifdef
(IAW), (v) interprocedural dependency with #ifdef (IEI) and
(vi) equivalent to interprocedural dependency without #ifdef
(IEW). Therefore, we implemented 36 programs.

We designed our experiment as a standard Latin square,
which is a common solution for this kind of experiment [18],
[19], [8]. We can explain the 6x6 Latin square we adopted
by means of Table I (Section IV). In its columns, we have
the variability bugs. The lines represent the groups of devel-
opers. We divided the developers in six groups (G1 to G6).
The acronyms in the cells bellow columns “Characteristic”
represent the program characteristics, as listed in the previous
paragraph. For instance, developers in group G1 analyzed the
program with global dependency with #ifdef (GI) that has
the null pointer dereference bug (first column of G1 line).
Developers in group G2 also analyzed the program with global
dependency with #ifdef (GI), but the one with the uninitialized
variable bug (VI) (three last columns of G2 line). The values in
Table I correspond to mean of time developers spent analyzing
the programs (time column) and number of bugs they correctly
found (hits). We discuss them in Section IV.

The Latin square design controls one factor and its varia-
tions, ensuring that no row or column contains the same treat-
ment twice. Our factor was the program characteristic (type
of dependency + with/without #ifdef). Each line of our Latin
square has six programs with different characteristics arranged
in different orders. However, there might still be learning
effects due to repetition of variability bugs. We avoided this
by distributing the variability bugs along our Latin square
columns. Each column has a different type of variability bug
(without repetition). Therefore, according to his/her designated
group, each developer debugged six different programs, each
with a different variability bug (and its respective domain)
and each with a different type of feature dependency (with
and without #ifdef). The result is the same number of data
points for all debugging tasks. As we have 30 participants, we
obtained 180 data points, five data points for each of the 36
programs.

B. Participants

We counted on 30 participants to run our experiment: six
undergraduate students, six MSc students, six PhD students,
six professors, and six developers from industry. We put them
in six groups with five participants each. Randomly, we formed



each group with one participant of each category, i.e., one
undergraduate student, one Msc student and so forth.

We selected the students from three universities located
at three different cities of Brazil and the developers from
two companies located at two different cities of Brazil. No
compensation was provided for the participants.

Out of these 30 participants, one participant’s eye tracking
data were discarded due to poor quality. This was due to tech-
nical issues with the eye tracker. Eighteen participants have
normal vision and 12 have vision corrected by glasses. Seven
participants are females and 23 are males. All the participants
have similar experience in C programming language. Sixteen
participants declared themselves as expert developers and only
three claimed that had not worked at the industry yet.

C. Variability Bugs

When a fault or error happens in a configurable system
due to variability implementation, it is called as variability
bug [4]. Previous studies related variability bugs to feature
dependencies [4], [20]. We implemented the programs used
in our experiment inspired in concrete variability bugs, which
occurred in real large-scale configurable systems [4], [8], [5]:
Linux [4], [5], BusyBox [21], [8], BestLap [20], GLib [14] and
Libxml [14]. However, we could not use source code of large-
scale systems in our study due to the following restrictions:
Domain. Our programs should be on domains which partici-
pants could easily understand. We avoided programs (like the
ones from Linux) which could affect comprehensibility.
Native language. To facilitate the understanding and to widen
the audience of potential participants, the programs should be
written in the participants’ native language (Portuguese).
Small programs. The programs should fit on a 39-line display
window so that the eye-tracking device would record all gaze
movements of participants.

Having these restrictions in mind, we took an example of
each selected variability bug from a real configurable system
or from previous studies. Then, we reproduced that bug in a
small program, on a popular domain, written in C with variable
and feature names in the participants’ native language.

The 36 programs are similar in terms of number of lines
of code (LOC) [22], number of features (NOFC) [7] and
McCabe cyclomatic complexity (CC) [23]. In the following,
we describe each variability bug we implemented.

Null pointer dereference. This bug happens when a pro-
gram attempts to read a value from a null pointer. Listing
4 shows a code snippet of the program we wrote with a null
pointer dereference bug. It is about “printing a sales authoriza-
tion message”. It has two features: CUSTOMIZE_MESSAGE
and SETUP_COMMUNICATION. CUSTOMIZE_MESSAGE
personalizes the message with the name of the store
and SETUP_COMMUNICATION checks communication er-
rors. An exception occurs when CUSTOMIZE_MESSAGE
is disabled. It happens because p is updated within
CUSTOMIZE_MESSAGE. The expression if(*p =="")
(line 12) causes a null-pointer exception because p has null
value and cannot be compared with empty. We wrote this

program taking as example a bug found in BusyBox [21],
[8], an open source system that provides essential Unix tools.

Listing 4. Code snippet of the null pointer dereference bug with #ifdef
1 char *p = NULL;
2 char message[25];
3 ...
4 int main() {
5 char msg[25];
6 ...
7 #ifdef CUSTOMIZE_MESSAGE
8 strcpy(message,"Store XYZ - ");
9 p = message;

10 #endif
11 if(*p =="")
12 strcpy(message, msg);
13 ...

Listing 5 shows the version of the program with null
pointer dereference bug now without #ifdefs. We rewrote the
program showed in Listing 4 by replacing #ifdefs with if
clauses. The bug remains the same in Listing 5, as line 12
executes the expression if(*p ==""), which causes a null-
pointer exception. However, in this case, the bug is caused
by a variable whose value is false, and not by disabling a
feature. It is important to recall that Listing 4 shows the
program with global dependency with #ifdef and Listing 5
shows its equivalent without #ifdef. Besides them, we also
had in our experiment other four programs with the null
pointer dereference bug, which implement intraprocedural
and interprocedural dependencies and its equivalent without
#ifdefs. For the bugs we describe next, we only show one of
the programs with #ifdef.

In some of the programs, there are #ifdefs surrounding
variable definitions (for instance, Listing 2, lines 2 to 4), or
#ifdefs surroundingelse clauses (for instance, Listing 6, lines
11 to 13). In this cases, we just deleted the #ifdefs and did not
replace them with if clauses. We did this because, in fact,
converting those #ifdefs into ifs does not make sense.

Listing 5. Code snippet of the null pointer dereference bug without #ifdef
1 char *p = NULL;
2 char message[25];
3 bool customize_message = false;
4 int main() {
5 char msg[25];
6 ...
7 if (customize_message){
8 strcpy(message,"Store XYZ - ");
9 p = message;

10 }
11 if(*p =="")
12 strcpy(message, msg);
13 ...

Assertion-Error. An Assertion-Error occurs when some-
thing that should never happen happens. This bug was found
in BestLap, which is a commercial highly configurable race
game, investigated by previous research [15], [20], [21], [8].
The car racing game calculates score of players and adds a
penalty when their cars crash. As the score should not be
negative, the assertion error occurs when the score stores
negative values. Based on BestLap, we wrote a program that
“calculates scores in language proficiency tests”. We apply



penalties in case the exam time is exceeded. Listing 1 (Section
II) shows a code snippet of one of the programs with this
bug. It has two features: APPLY_PENALTY and RESULT.
APPLY_PENALTY applies penalties in case the exam time is
exceeded, and RESULT prints the final result. The bug occurs
when both APPLY_PENALTY and RESULT are enabled and
final_grade is negative. In this case, instead of generating
an error, the program prints a wrong message (line 17).

Logic error: Logic error occurs when a program produces
unintended or undesired output. Logic errors are often the most
general errors and hardest to identify [24]. Listing 6 shows an
excerpt of our program that “calculates the value of payments
if the customer decides to purchase in 3 installments”. The
customer can use credit card or checks to split a sale. If he
or she chooses checks, the program adds an interest of 5%
to the purchase value. If the sale is paid on a credit card,
the program does not add any interest. The customer also
may choose not to split the purchase. The CREDIT_CARD
and CHECK features calculate instalment values without and
with interest, respectively. Note that both features enable the
program to split the purchase in three installments, but the
purchase will be split whether the value of use_card (line
5) or use_checks (line 9) is true. The logic error occurs
when CREDIT_CARD and CHECK are enabled. When the two
features are enabled, the clause else (line 13) is associated
with the scope of clause if of use_checks only. Thus, if
use_card (line 5) is true and use_checks (line 9) is false,
the value of instalments is overlapped.

Listing 6. Code snippet of the logic error
1 int main() {
2 ...
3 #ifdef CREDIT_CARD
4 if (use_card)
5 instalments = purchase/3;
6 #endif
7 #ifdef CHECK
8 if (use_checks)
9 instalments=(purchase + (purchase * 0.05))/3;

10 #endif
11 #ifdef CREDIT_CARD || CHECK
12 else
13 #endif
14 instalments = purchase;
15 ...

Nested features. Previous studies [7] reported that nesting
features make the source code prone to errors [7], [25].
Listing 2 (Section II) shows an excerpt of our program
where nested features cause a variability bug. The program
processes the “return of books to a library”. If a book
is returned after the due date, the system applies either a
fine or a penalty in days during which the user will be
unable to make new loans. FINE_IN_CASH calculates the
fine (line 11) and PUNISHMENT_IN_DAYS calculates the
penalty in days. Note that PUNISHMENT_IN_DAYS (line 12)
is inside FINE_IN_CASH (line 10). The bug happens when
FINE_IN_CASH is disabled, because doing this also disables
PUNISHMENT_IN_DAYS.

Undefined variable. This bug happens when a variable is
not previously declared but it is accessed later on. To write our

program we took as example a bug found in Libxml1, a config-
urable system for parsing XML files [14]. Listing 7 presents a
code snippet of our program with this variability bug. It “calcu-
lates the registration fee of an event”. The program applies dis-
counts for students or attendees with membership association.
The program has two features called STUDENT_DISCOUNT
and MEMBERSHIP_ASSOCIATION. STUDENT_DISCOUNT
applies a discount for students (lines 3, 7 and 10).
MEMBERSHIP_ASSOCIATION applies a discount for atten-
dees with a membership association (line 7). The bug happens
because the discount variable is defined only if either
STUDENT_DISCOUNT or MEMBERSHIP_ASSOCIATION is
enabled (line 8). If both features are disabled, discount is
undefined and the program runs into an undefined variable
error, because discount is used ahead (in line 15).

Listing 7. Code snippet of the undefined variable bug
1 ...
2 float calculateRegistrationFee() {
3 #ifdef STUDENT_DISCOUNT
4 bool apply_discount_student = true;
5 #endif
6 ...
7 #ifdef STUDENT_DISCOUNT || MEMBERSHIP_ASSOCIATION
8 float discount=0;
9 #endif

10 #ifdef STUDENT_DISCOUNT
11 if (apply_discount_student)
12 discount += 0.1;
13 #endif
14 ...
15 registration = registration - (registration *

discount);
16 ...

Uninitialized variable. This bug happens when a variable
is declared but is not set before its use. Abal et al. show
this is a frequent bug in Linux kernel [4], [5]. Our pro-
gram with this bug “calculates points based on a students’
curriculum” (Listing 3 (Section II)). The number of points
of a student increases with the number of courses he or
she accomplished. When CONSIDER_SPECIALIZATION is
enabled, total_points receives one extra point (line 8), if
isSpecialist is true. The variability bug occurs because
total_points is not initialized before (line 14).

D. Procedure

Before executing the actual experiment, we carried out three
pilot studies. In the first one, in addition to find bugs, we asked
participants to fix them. However, they took so long to do that.
Moreover, we had problems to record their gaze movements
as our eye-tracking device does not work well on non-static
screens. So, we changed our experiment procedures for the
second and third pilot studies: the participants only had to
find bugs analyzing a small program showed in a static image,
which they could not manipulate. The second and third pilot
studies were mainly useful for us to correct problems with
the programs. We performed the pilot studies with four PhD
students. We did not consider their results in our analysis.

1http://xmlsoft.org/



Before starting the experiment tasks, we briefly trained
every developer on conditional compilation, variability, fea-
tures and system configuration. Then, we calibrated the eye-
tracking device and performed a small warm-up task. All the
participants signed a consent form.

The participants debugged the programs as we planned in
our Latin square design. When the participant indicated he
or she finished analyzing a program, we registered the time.
Finally, to check whether he or she correctly found the bug,
we asked each developer: “how would you fix this bug?”.

We presented each program to the participants as static
images displayed on a single screen. Participants did not
have access tools, IDEs or browsers. For each participant, we
recorded x and y coordinates (fixations) via an eye tracker.

We performed each experiment trial individually. All partici-
pants used the same personal computer to avoid unintended ef-
fects from different software and hardware environments. The
computer has the following configuration: a 64-bit windows 10
home single language with Intel core i5. The screen resolution
was set to 1920 by 1080 pixels into a 15 inch LCD screen.
All experiment trials were conducted in similar classrooms.
We recorded all of the eye tracking data using the open-source
tool OGAMA [26]. We used the Tobii EyeX Device.

IV. EXPERIMENTAL RESULTS

In this section, we test our hypotheses and discuss results.
We measured comprehensibility according to: (i) time to find
a bug, and (ii) number of correctly found bugs. We also
measured developers’ visual effort: (i) number of fixations,
and (ii) gaze transitions. We also analyzed attention maps
generated by means of the eye tracker.

We ran ANOVA tests for hypothesis testing. We used p-
value < 0.05 as the probability about rejecting null hypotheses.
The only exception, was the number of found bugs variable.
ANOVA does not apply for it as it holds binary values. Thus,
we used inferential statistics to evaluate it. We ran our tests
with the support of R2. All artifacts used in our experiment
are available at our website3. In the following, we present the
results regarding each metric.

A. Time to find bugs

We measured the time (in seconds) each participant took to
analyze each program, similarly as Sharif et al. [27] did. Our
null hypothesis about this metric is:

H0t: There is no significant difference in the time to find
bugs when comparing programs with different types of feature
dependency.

Rows in Table I show the mean time (column time) spent by
each group of participants (G1 to G6) for each characteristic of
program and for each variability bug. Each group was compose
by 5 participants. Consequently, we had 5 observations for
each group, 30 observations for each row, which summed up
as a total of 180 observations. Shapiro test confirmed that the
data about time to find bugs was normally distributed.

2http://www.r-project.org/
3http://www.djansantos.com.br/projects/FeatureDependency/

Table II shows the mean time spent by all participants
for each type of dependency. For example, they spent a
mean time of 323.10 seconds to analyze programs of global
dependency with #ifdefs (GI). For global dependency without
#ifdefs (GW), the mean time was 228.70 seconds. Our data
revealed that there was a significant difference in time for the
developers to analyze different types of dependency (p-value
= 5.613e-05). We, thus, reject our null hypothesis (H0t).

We, then, used Tukey HSD (honestly significant difference)
test to find means of time that are significantly different. Tukey
HSD test compares all possible pairs of means of time. First,
we compared the mean time related to programs with #ifdefs
(GI, IAI and IEI) (Table II). The difference of time between
GI and IEI is negligible (p-value = 1.00). In contrast, when
comparing IAI with GI and IEI, the difference is significant
(p-value = 0.045 and 0.049, respectively). This leads to our
first result.

Result 1: Global dependencies and interprocedural de-
pendencies required more time for finding bugs than
intraprocedural dependency.

We also compared the time spent for analyzing the three
types of programs without #ifdefs (GW, IAW and IEW) (Table
II). According Tukey HSD test, the time to analyze each of
them is not significantly different (all p-values are larger than
0.126). This, somehow, reinforces that the differences stated
in Result 1 are due to the use of #ifdefs.

Curiously, our data also revealed that the mean time is
not significantly different when we compare programs with
intraprocedural dependency with and without #ifdefs (IAI vs.
IAW) (p-value = 0.961). This leads to our second result, which,
regarding a specific context, contradicts previous study that
says that #ifdefs increase debugging time [8].

Result 2: The use of #ifdef did not increase bug detec-
tion time in programs with intraprocedural dependency
characteristic.

We also compared programs with interprocedural charac-
teristic with and without #ifdefs (IEI vs. IEW). Similarly
to intraprocedural programs, our results showed negligible
difference in time for bug detection (p-value = 0.657).

We also compared global dependency with and without
#ifdefs (GI vs. GW) (Table II). In this case, the difference
in bug detection time is significant (p-value = 0.001).

Result 3: The use of #ifdefs increases bug detection time
for programs with global dependency characteristic.

B. Number of correctly found bugs

The number of correctly found bugs metric refers to whether
a participant answered each task correctly. It is about cor-
rectness [27]. If a participant finds a bug correctly, he or she
scores one for that program. For this, we registered the answers
provided by participants. Our null hypothesis about this metric
is:

H0a: There is no significant difference in number of cor-
rectly found bugs when comparing programs with different
types of feature dependency.



TABLE I
OVERVIEW OF EXPERIMENT DESIGN AND RESULTS

Variability Bugs
Null pointer dereference Assertion error Logic error Nested feature Undefined variable Uninitialized variable

Group Characteristic time hits Characteristic time hits Characteristic time hits Characteristic time hits Characteristic time hits Characteristic time hits
G1 GI 338 3 GW 287 3 IAI 292 5 IAW 216 4 IEI 252 3 IEW 203 3
G2 GW 418 3 IAI 366 5 IAW 258 5 IEI 267 1 IEW 212 4 GI 182 5
G3 IAI 315 1 IAW 262 5 IEI 224 3 IEW 281 5 GI 123 5 GW 101 5
G4 IAW 383 1 IEI 339 4 IEW 224 4 GI 412 2 GW 362 5 IAI 234 5
G5 IEI 414 1 IEW 225 4 GI 194 2 GW 206 5 IAI 324 3 IAW 148 4
G6 IEW 461 3 GI 353 4 GW 390 3 IAI 287 4 IAW 288 5 IEI 168 5

TABLE II
MEAN TIME AND FOUND BUGS FOR EACH TYPES OF DEPENDENCY

Dependencies GI GW IAI IAW IEI IEW
Mean time 323.10 228.70 255.10 235.00 322.50 287.20

#found bugs 21 24 23 24 17 23

Table I shows the number of bugs correctly found (column
hits) by each group of participants (G1 to G6) for each
characteristic of program and for each variability bug. Table II
shows the number of correctly found bugs by all participants
for each type of dependency.

Comparing programs with #ifdefs, from a total of 30 tasks,
21 participants answered correctly the tasks about global
dependency (GI), 23 answered correctly for intraprocedural
dependency (IAI) and 17 for interprocedural dependency (IEI).
Interprocedural dependency, therefore, seems to make bug
detection more difficult. However, the χ2 test (Pearson’s Chi-
squared test) [28] revealed no significant difference between
the three types of feature dependency. The value χ2 is less
than 5.53, and the p-values are greater than 0.35. Based on
this, we cannot reject our null hypothesis H0a.

Result 4: There was no significant difference on the
number of correctly found bugs for different types of
feature dependency.

C. Visual effort

Visual effort is directly linked to the cognitive effort [29],
[30], [27]. A set of eye-tracking measures representing visual
effort are derived from eye gaze data. A fixation is a type
of eye movement in which the eye stops on some object
of interest to obtain information. Saccades are very fast
voluntary movements between fixings. Regression is a saccade
performed in the opposite direction to the reading direction
[29].

The number of fixations is thought to be negatively cor-
related with search efficiency [31]. Also, the proportion of
time looking at a particular display element could reflect the
importance of that element [32], [33]. The literature sets a
duration of 60 microseconds as the minimum threshold for
having a fixation. Also, it sets a space of seven to nine letters
for characterizing saccades [34]. We followed these thresholds
and discarded anything below them [35], [36], [32].

Number of fixations
The number of fixations increases when a text is difficult

to comprehend [34]. We counted the number of fixations per
program. Our null hypothesis about this metric is:

H0f : There is no significant difference in number of fix-
ations when developers try to find bugs in programs with
different types of feature dependency.

Considering programs with #ifdef, our data revealed that
the number of fixations were significantly different between
programs with different types of feature dependency (p-value =
5.613e-05). Analyzing programs with global dependency (GI),
required from all participants a mean of 1011.93 fixations. For
intraprocedural dependency (IAI), it required a mean of 741.56
fixations, and for interprocedural dependency (IEI), the mean
was 1016.67 fixations.

Tukey HSD showed that the difference between global
dependency (GI) and interprocedural dependency (IEI) is
negligible (p-value = 0.99). In contrast, the number of fixations
in programs with global and interprocedural dependencies is
significantly higher than the number of fixations in programs
with intraprocedural dependency (IAI) (p-value = 0.008 and
0.006 respectively).

Result 5: Developers made more fixations to understand
programs with global and interprocedural dependencies
than programs with intraprocedural dependencies.

In addition, when considering programs without #ifdefs
(GW vs. IAW vs. IEW), our data shows that there is no
significant difference among them in terms of number of
fixation (all p values are larger than 0.9127183). This somehow
reinforces that the differences stated in Result 5 are due to the
use of #ifdefs and not due to the characteristic of the programs
in terms of use of variables and functions.

Our study also revealed that the number of fixations is
not significantly different when comparing data obtained for
programs with intraprocedural characteristic with and without
#ifdefs (IAI vs. IAW) (p-value = 0.86). This leads to the
following result, which reinforces Result 2.

Result 6: The use of #ifdefs did not increase the number
of fixation when developers try to find bugs in programs
with intraprocedural dependency characteristic.

Finally, our results indicate that, regarding global and in-
terprocedural characteristics, programs with #ifdefs required
more number of fixations than the ones without #ifdefs (p-
value = 2.1e-06 and 1.93e-04, respectively).

Result 7: The use of #ifdefs increased the number of
fixations in programs with global and interprocedural
characteristics.

Gaze transitions
Gaze transitions (a.k.a. saccades) are rapid eye movements

from one place to another separated by pauses [34]. A larger
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Fig. 1. Gaze transitions between AOIs for different types of feature dependency in programs with the null pointer dereferenced bug.

number of saccades in both directions indicates difficulty
associated with understanding [36], [34], [29].

We compute gaze transitions based in areas of interest
(AOI) of each program. An AOI is a region of interest in
a study. We defined the AOIs with OGAMA’s AOI editor. Our
AOIs comprised regions of source code that showed variable
definitions, feature code and bug regions. For example, in
Listing 4, we define variables in lines 1 and 2. Thus, we
defined this region as the AOI “variable definition”. Lines 7 to
10 comprise source code of CUSTOMIZE_MESSAGE feature.
We defined this AOI as “customize message feature”. The
same happens with the SETUP_COMMUNICATION feature
(not shown in Listing 4). We defined its source code as AOI
“setup communication feature”. Finally, the AOI “Bug” is
limited by lines 11 and 13, because it is where the bug occurs.
The definitions of AOIs for each of our programs are detailed
in our website.

Figure 1 shows our gaze transitions diagrams related to
programs with the “null pointer dereferenced” bug. Arrows
indicate the percentage of gaze transactions between different
AOIs of the program in both directions. For example, Figure
1a depicts that 5% of all gaze transitions performed by par-
ticipants to find the “null pointer dereferenced” bug happened
from the AOI“bug” to the AOI “customize message feature”.
A dashed arrow indicates that the sum of gaze transactions
in both directions corresponds to 10% or less of the total of
gaze transactions. A bold arrow indicates that the sum of gaze
transactions corresponds to 40% or more of the total of gaze
transactions. A regular line indicates intermediate values.

Figure 1a shows the diagram for the program with intrapro-
cedural dependency with #ifdef (IAI), Figure 1b shows the
diagram for the program with global dependency with #ifdef
(GI) and Figure 1c shows the diagram for the program with
interprocedural dependency with #ifdef (IEI). The three are
related to the “null point dereferenced” bug. We took this bug
as an example for what similarly happens for other cases.

The gaze transitions diagram reveals that, for programs with
global and intraprocedural dependencies, participants concen-
trated the largest number of saccades between few AOIs. Fig.
1a shows a concentration of about 48% (24% + 24%) of
gaze transitions between the AOIs “variable definition” and
“setup communication feature”. Fig. 1b shows a concentration

of about 43% (21% + 22%) of gaze transitions between
AOIs “customize message feature” and “setup communica-
tion feature”. On the other hand, Fig. 1c reveals that that
participants, when debugging programs with interprocedural
dependency, need to navigate over all source code, and, as a
consequence, the gaze transitions are more distributed between
all AOIs. Note in Fig. 1c that values do not exceed 30%.
Although we only show here the diagrams for the “null pointer
dereferenced” bug, we observed similar results for most of the
other bugs.

Result 8: Interprocedural dependency seems to force the
developer to perform more gaze transitions over different
parts of the source code.

Attention map
An attention map is a histogram, also known as heat map,

that displays an aggregation of fixations. An attention map
shows how attention is distributed among program parts [37].
It uses colors to represent the fixation time in each location on
the screen. Three examples are shown in Fig. 2. The lowest
value in the attention map (short fixation time) is shown with
the green color and the highest value in red (long fixation
time), with a smooth transition between these extremes.

Figure 2 shows the aggregated attention maps for the
“assertion error” variability bug for the three types of feature
dependency. We generated the aggregated attention maps using
OGAMA. We superimposed all individual attention maps from
each participant. Each attention map of the “assertion error”
variability bug (Fig. 2) is, thus, composed by the overlapping
of five individual attention maps.

The red regions indicate where most of participants’ atten-
tion was directed to. Comparing the red regions of the three
attention maps in Fig 2, we observe that the attention distri-
bution is similar for programs with global and intraprocedural
dependencies. In these cases, participants focused most of their
attention in the source code of the APPLY_PENALTY feature.
The bug occurs inside RESULTS, when APPLY_PENALTY
is enable. Thus, this area requires more attention from par-
ticipants. In addition. in both programs, APPLY_PENALTY is
near RESULTS.

On the other hand, in the attention map regarding in-
terprocedural dependency (Fig. 2c), there are two dis-
tinct red regions. One region encapsulates the source code
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Fig. 2. Heat map and gaze transition diagram with initial scan

of APPLY_PENALTY and the other red region is about
RESULTS. In this case, however, the two regions are far from
each other. Participants need, thus, to focus on each region
separately. This leads to the following result.

Result 9: Interprocedural dependencies appear to in-
crease fixation time in more distinct areas of the source
code.

In the right side of Figure 2, we also show gaze transition
diagrams related to each attention map. These diagrams depict
the first three minutes of an “assertion error variability”
debugging task performed by a participant. The diagram shows
the y-coordinate that the participant was looking at as a
function of time. The top of the diagram corresponds to the
first line of the program and the bottom corresponds to the last
line. We can observe in these diagrams that the initial scan
the participant performed on the program is relatively similar
for programs with global and intraprocedural dependencies.
Normally, developers perform a preliminary reading of the
source code in a very fast pace and then start reviewing
the source code afterward. Concerning the source codes with
#ifdefs, participant appears to prolong the preliminary reading
in programs with global and intraprocedural dependencies.
Similar behavior was reported in previous studies [38], [8].

In contrast, Fig. 2c shows that, in the program with inter-
procedural dependency, the participant performed a very fast
preliminary reading and, then, continued with the mental simu-
lation of the main() function. This reinforces our hypothesis
that participants navigated through more distinct areas of the
code in programs with interprocedural dependency.

D. Discussion
Here we answer our research question How different types

of feature dependency affect the comprehensibility of config-
urable systems? by discussing different aspects of our findings.

#ifdefs affect comprehensibility in different degrees ac-
cording with the type of feature dependency.

Our results 1, 3, 5 and 7 show that programs with global
or interprocedural dependencies demand more comprehension
effort for finding bugs. Developers spent more time and more
number of fixations, when compared with programs with
intraprocedural dependency. We hypothesize that this occurs
because with both global and interprocedural dependencies,
the point of definition of the dependent variable is far from
its usage. Our results also show that the use of #ifdef hinders
comprehensibility while debugging. Multiple researches also
indicate that #ifdef might amplify maintenance problems [39],
[40], [15], [2], [6]. However, our results indicate that this only
happened for programs with global and interprocedural depen-
dencies. Again, we hypothesize that this happens because the
long distance between the dependent variable definition and its
usages makes it difficult to simulate different configurations of
enabled/disabled features.

Intraprocedural dependencies had no influence on pro-
gram comprehensibility.

Our Results 2 and 6 indicate that #ifdefs may not affect
the comprehensibility of programs with intraprocedural de-
pendency. We hypothesize that this happens because the point
of definition of dependent variable is closer from its usage.
This result contradicts previous studies [8].

Interprocedural dependencies required more visual ef-
fort.

Results 8 and 9 show that the interprocedural dependency
may increase visual effort. To find a bug, participants needed
to perform more gaze transitions and focused more time on
distinct parts of the source code.

Feature dependency did not affect the number of found
bugs.

Result 4 revealed that the number of correctly found bugs
was not affected by features dependency. This means that
feature dependency may increase time and visual effort to
find bugs, but do not decrease developers’ ability to find bugs.
This result confirms previous studies that showed that most
participants correctly identify bugs in programs with #ifdef
[21], [8]. However, programs with interprocedural dependency
had fewer hits than other types of feature dependency.

Other findings
We also compared data in terms of variability bugs. We

observed that the “null pointer dereference” bug was always
difficult to find. Participants spent more time and found a
lower number “null pointer dereference” bugs in both with
and without #ifdef versions of the programs. Only 40% of
the participants found this bug. In contrast, the “uninitialized
variable” bug was always easy to find. Only 3 developer of
30 did not find this bug. These results may indicate that these
bugs are not induced by variability, which contradicts previous
studies [4], [5]. It is important to recall that these differences



did not impact the analysis about feature dependencies as all
participants analyzed programs with all types of bugs.

V. THREATS TO VALIDITY

A. Internal validity

Programming language. We wrote our programs in C,
because conditional compilation directives in C are native and
are one of the most popular mechanisms in use. Beside, most
of the studies that report variability bugs are also in C. The
knowledge in C could influence our results. To minimize that,
we only admitted participants with previous experience on C.

Participants’ experience. We selected participants accord-
ing their level of experience and distributed them into the Latin
square groups. For example, each of the six PhD students
went to a different group (G1 - G6) (Table I). The order
of participation in the experiment determined the group. For
example, the first PhD student went to group one (G1) and so
on. So, we controlled confounding factors via the Latin square
design and randomization.

Lab settings. All experiment trials were done in similar
classrooms and with our supervision. We observed temperature
and brightness conditions. In the moment of the execution of
experiment, the classroom had only the participant and the
authors.

B. External validity

Real bugs and features. Due to limitations we used
small programs. But, our programs were inspired on concrete
variability bugs found in real configurable systems. For this
reason, our results may hold to other programs. However, for
programs over 39 lines of code and more than two features,
there may be additional effects that we have not observed.

Lab settings. Our results are also limited to the environment
we adopted. A more realistic environment, with IDEs and
source code with multiple files, would be ideal. However, this
design would not be attractive for many participants, since it
would require more time for execution. In addition, we have
the limitation that the source code should fit on the screen due
to the eye tracking device.

C. Construct validity

Comprehensibility measurement. Measuring comprehen-
sibility is not trivial because it involves human factors. There-
fore, it is always a threat to construct validity. To minimize this
threat, we quantified comprehensibility by means of different
metrics, all of them already used in previous studies.

VI. RELATED WORK

A variety of studies focused on configurable systems based
on preprocessing directives and feature dependencies. Ro-
drigues et al. [14] classified the types of feature dependency.
They also established a set of metrics that measure the
occurrence of each type of dependency. Ribeiro et al. [15]
showed that feature dependency occurs in 65% of the methods
of the systems they studied. Thus, feature dependency often
occurs in practice. Abal et al. performed a qualitative study

about 42 variability bugs collected from bug-fixing commits
of the Linux kernel repository, and provided insights into the
nature and occurrence of variability bugs [4].

Previous studies used biometric devices to evaluate humans’
behavior while debugging source codes. Siegmund et al. [30]
used images captured from a functional magnetic resonance
imaging (fMRI) to identify patterns of brain activation for
small comprehension tasks. Kevic et al. [41] used eye tracing
device to identify the navigational behavior of the developer
when performing a source code change activity.

Some studies have assessed the effect of #ifdef in mainte-
nance tasks. Schulze et al. observed that finding and correcting
errors is a time-consuming and tedious task in the presence
of preprocessor annotations [9]. Melo et al. [8] used an eye-
tracking device to evaluate the comprehensibility of config-
urable systems. However, they compared programs with and
without #ifdef of only two domains. Moreover, they did not
analyzed their data taking feature dependency into account.
This is the main difference from our study, which explicitly
analyzed in details how three types of feature dependency
affect the comprehensibility of configurable systems.

VII. CONCLUSION AND FUTURE WORK

We executed a controlled experiment with human subjects
to investigate how feature dependencies affect the compre-
hensibility of configurable systems implemented with #ifdefs.
We asked the participants to try to find different types of
bugs in programs with different types of feature dependency.
Then, we measured their performance in terms of spent time,
number of found bugs and visual effort. Our results show that
different types of feature dependency affect comprehensibility
in different degrees. We observed that: (i) global and inter-
procedural dependencies demanded more time understand, (ii)
interprocedural dependencies required more visual effort and
(iii) #ifdefs did not impact the comprehensibility of programs
with intraprocedural dependencies. These results lead us to
hypothesize that comprehensibility is more negatively affected
when a variable which is shared between features is defined
in a point far from the points where it is used.

The insights obtained with our study can, in the future,
support developers of configurable systems to know the parts
of the source code they should take more care about. These
parts would be the ones with certain characteristics (for
instance, contains certain type of feature dependency) that
make them more difficult to understand and, therefore, more
bug prone.

As future work, we intend to further investigate the insights
we obtained with the results of this study. We plan to undertake
another experiment to evaluate whether the current results hold
for large-scale maintenance tasks and programs with more
features.
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